Balancing success! With acceptable tune
Still playing with acceleration limits and constrains on outputs and buffers in the controllers but robot works quite good now.
This commit is contained in:
parent
35479c6f0a
commit
20684701f5
227
main.cpp
227
main.cpp
@ -18,6 +18,7 @@
|
||||
#include "src/control/lpf.h"
|
||||
#include "src/control/PID.h"
|
||||
#include "src/control/ImuFusion.h"
|
||||
#include "src/control/MadgwickAHRS.h"
|
||||
// Serialization
|
||||
#include "src/serialization/RCProtocol.h"
|
||||
|
||||
@ -32,7 +33,12 @@ using namespace serialization;
|
||||
EventQueue queue;
|
||||
|
||||
// Serial port (Servo Outputs)
|
||||
Serial serial(PA_2, PA_3, 57600);
|
||||
RawSerial serial(PA_2, PA_3, 250000);
|
||||
RCProtocol RC;
|
||||
|
||||
// Pool to send Remote Control packages between threads
|
||||
MemoryPool<RCProtocol::Packet, 16> mpool;
|
||||
Queue<RCProtocol::Packet, 16> RCQueue;
|
||||
|
||||
// MPU setup
|
||||
SPI spi(PA_7, PA_6, PA_5); //define the SPI (mosi, miso, sclk). Default frequency is 1Mhz
|
||||
@ -41,135 +47,179 @@ mpu6000_spi imu(spi,PA_4); //define the mpu6000 object
|
||||
PwmOut ledBlue(D4);
|
||||
DigitalOut ledOrg(D5);
|
||||
|
||||
// Stepper motorL(PC_9, PB_1, PC_8);
|
||||
Stepper motorL(PC_9, PC_7, PC_8);
|
||||
Stepper motorR(PB_15, PB_14, PC_6);
|
||||
|
||||
Servo servo(PA_0);
|
||||
|
||||
// Interrupt pin from Gyro to MCU
|
||||
InterruptIn gyroINT(PC_4);
|
||||
|
||||
InterruptIn gyroISR(PC_4);
|
||||
// Madwick filter
|
||||
Madgwick madgwick;
|
||||
// Timer to calculate dT
|
||||
Timer timer;
|
||||
|
||||
// TODO: Figure out some good values
|
||||
controllerPI throttleControl(0.0025, 0.01, 5, 0); // 0.065, 0.05, 12, 40
|
||||
// A PI controller for throttle control
|
||||
controllerPI throttleControl(35.0, 3.0, 20, 60); // 35.0, 3.0, 20, 60
|
||||
|
||||
// TODO: Figure out some good values
|
||||
controllerPD angleControl(10.0, 146.0, 400);
|
||||
// Alternatively try controllerPD2 which has another Dterm implementation
|
||||
// A PID for angle control
|
||||
controllerPID angleControl(100.0f, 200.0f, 0.5f, 4000, 2000); // 100.0f, 200.0f, 0.5f, 4000, 2000
|
||||
|
||||
// Draft of some control function
|
||||
// this runs in the context of eventThread and is triggered by the gyro ISR pin
|
||||
void controlFunc()
|
||||
// The control function to balance the robot
|
||||
// Ran at high prio and triggered as an event by the gyro Interrupt pin
|
||||
void runControl()
|
||||
{
|
||||
static ImuFusion imuFusion(&imu);
|
||||
static float controlOutput(0.0f);
|
||||
|
||||
static RCProtocol::Packet remote;
|
||||
osEvent evt = RCQueue.get(0);
|
||||
if (evt.status == osEventMessage) {
|
||||
RCProtocol::Packet* pPacket = (RCProtocol::Packet*)evt.value.p;
|
||||
remote = *pPacket;
|
||||
mpool.free(pPacket);
|
||||
|
||||
throttleControl.setGainScaling(remote.Ki, remote.Kd);
|
||||
//throttleControl.setGainScaling(0, 0);
|
||||
|
||||
//angleControl.setGainScaling(remote.Kp, remote.Ki, remote.Kd);
|
||||
angleControl.setGainScaling(remote.Kp, 0, -900);
|
||||
|
||||
servo.setPosition((float)remote.Throttle/1000.0f);
|
||||
}
|
||||
|
||||
|
||||
// Calculate dT in sec
|
||||
float dT = timer.read_us()/(float)1000000.0;
|
||||
float dT = timer.read_us()/(float)10e6;
|
||||
timer.reset();
|
||||
|
||||
// Retrieve IMU angle (Only x-axis implemented for now)
|
||||
float angleX = imuFusion.getAngle(dT);
|
||||
float forceX = sin(angleX/180*PI);
|
||||
// Retrieve IMU angle
|
||||
madgwick.updateIMU(imu.read_rot(0),
|
||||
imu.read_rot(1),
|
||||
imu.read_rot(2),
|
||||
imu.read_acc(0),
|
||||
imu.read_acc(1),
|
||||
imu.read_acc(2));
|
||||
float angleX = madgwick.getPitch();
|
||||
|
||||
// Reset anything left in the IMU FIFO queue
|
||||
imu.fifo_reset();
|
||||
|
||||
// If the robot is above this angle we turn off motors
|
||||
static bool disabled = false;
|
||||
if (abs(angleX) > (float)50.0f && !disabled)
|
||||
if (!remote.Enabled || (abs(angleX) > (float)50.0f && !disabled))
|
||||
{
|
||||
controlOutput = 0.0f; // rinse integral
|
||||
disabled = true;
|
||||
motorL.disable();
|
||||
motorR.disable();
|
||||
}
|
||||
else if (abs(angleX) < (float)50.0f && disabled)
|
||||
else if (remote.Enabled && abs(angleX) < (float)10.0f && disabled)
|
||||
{
|
||||
disabled = false;
|
||||
motorL.enable();
|
||||
motorR.enable();
|
||||
}
|
||||
|
||||
if (disabled)
|
||||
{
|
||||
throttleControl.flushIntegral();
|
||||
angleControl.flushIntegral();
|
||||
}
|
||||
|
||||
/* --------------------------
|
||||
Calculate estimated groundspeed
|
||||
of the robot.
|
||||
TODO: Inject correct input (compensate for robot rotation)
|
||||
of the robot in m/s
|
||||
-------------------------- */
|
||||
// Calculate filtered groundspeed of the robot (From deg/s to m/s)
|
||||
float estimatedSpeed((motorL.getSpeed() + motorR.getSpeed())/2);
|
||||
static incrementalLPF speedFilter;
|
||||
float filteredEstSpeed(speedFilter.filter(estimatedSpeed));
|
||||
float speedScale((1.0f/360.0f)*WHEEL_SIZE*PI);
|
||||
float groundSpeed(filteredEstSpeed*speedScale);
|
||||
// Static variables
|
||||
static float angleXOld = 0;
|
||||
static float motorAngularVelocity = 0;
|
||||
static float motorAngularVelocityOld = 0;
|
||||
static incrementalLPF filteredGroundSpeed;
|
||||
|
||||
if (disabled)
|
||||
{
|
||||
angleXOld = 0;
|
||||
motorAngularVelocity = 0;
|
||||
motorAngularVelocityOld = 0;
|
||||
filteredGroundSpeed.clear();
|
||||
}
|
||||
|
||||
// angular velocity - This way we get use of the madgwick filter
|
||||
float angularVelocity = (angleX - angleXOld) * dT;
|
||||
angleXOld = angleX;
|
||||
|
||||
// Motor Speed - Convert from deg/s to m/s
|
||||
motorAngularVelocityOld = motorAngularVelocity;
|
||||
motorAngularVelocity = ((motorL.getSpeed() + motorR.getSpeed())/2);
|
||||
|
||||
float estimatedGroundSpeed =
|
||||
(motorAngularVelocityOld - angularVelocity)/360.0f*PI*WHEEL_SIZE;
|
||||
estimatedGroundSpeed = filteredGroundSpeed.filter(estimatedGroundSpeed);
|
||||
|
||||
/* --------------------------
|
||||
Calculate the setpoint for
|
||||
the main control (control the angle)
|
||||
through this throttle control loop (PI)
|
||||
TODO: TEMP turned off the throttle
|
||||
control to tune the PD angle control
|
||||
-------------------------- */
|
||||
float throttle(0.0f); // TODO: This will be the input from remote
|
||||
float angleSP = 0.0f; // Temporarily emulate an output
|
||||
//float angleSP = throttleControl.run(dT, groundSpeed, throttle);
|
||||
float throttle = remote.Throttle*0.001f;
|
||||
|
||||
if (remote.Throttle < 50 && remote.Throttle > -50) {throttle = 0;}
|
||||
|
||||
// TODO: Figure out why we have the wrong sign here. I also had to reverse motors
|
||||
// For the angle control loop. Is the madgwick filter outputting the wrong sign?
|
||||
float angleSP = -throttleControl.run(dT, estimatedGroundSpeed, throttle);
|
||||
|
||||
/* --------------------------
|
||||
The last control loop. Angle (PD)
|
||||
TODO:
|
||||
-------------------------- */
|
||||
// Integrating the output to obtain acceleration
|
||||
if (!disabled)
|
||||
{
|
||||
controlOutput += angleControl.run(dT, forceX, angleSP);
|
||||
controlOutput = angleControl.run(dT, angleX, angleSP);
|
||||
|
||||
controlOutput = constrain(controlOutput, 3000.0f);
|
||||
}
|
||||
|
||||
|
||||
/* --------------------------
|
||||
Lastly the steering is added
|
||||
straight on the output
|
||||
TODO: Activate when implemented
|
||||
-------------------------- */
|
||||
float steering(0.0f); // This will come from remote
|
||||
float steering = remote.Steering*0.5;
|
||||
if (remote.Steering < 50 && remote.Steering > -50) {steering = 0;}
|
||||
motorL.setSpeed(controlOutput - steering);
|
||||
motorR.setSpeed(controlOutput + steering);
|
||||
|
||||
// Blink LED at 1hz
|
||||
static int i = 0;
|
||||
i++;
|
||||
if (i > 100)
|
||||
if (++i > (disabled ? 25 : 100))
|
||||
{
|
||||
i = 0;
|
||||
ledOrg = !ledOrg;
|
||||
}
|
||||
}
|
||||
|
||||
void serialContext()
|
||||
void serialISR()
|
||||
{
|
||||
static RCProtocol RC;
|
||||
|
||||
while (true)
|
||||
// Receive
|
||||
while (serial.readable())
|
||||
{
|
||||
// Receive
|
||||
while (serial.readable())
|
||||
bool newPackage = RC.appendByte(serial.getc());
|
||||
|
||||
if (newPackage)
|
||||
{
|
||||
bool newPackage = RC.appendByte(serial.getc());
|
||||
|
||||
if (newPackage)
|
||||
{
|
||||
RCProtocol::Packet packet = RC.read();
|
||||
}
|
||||
RCProtocol::Packet* pPacket = mpool.alloc();
|
||||
*pPacket = RC.read();
|
||||
RCQueue.put(pPacket);
|
||||
}
|
||||
// Sleep some?
|
||||
|
||||
// Transmit
|
||||
// serial.putc()...
|
||||
}
|
||||
// Sleep some?
|
||||
//Thread::wait(1);
|
||||
|
||||
// Transmit
|
||||
// serial.putc()...
|
||||
}
|
||||
|
||||
|
||||
// This context just pulses the blue LED
|
||||
void pulseLedContext()
|
||||
{
|
||||
@ -192,13 +242,9 @@ void pulseLedContext()
|
||||
// main() runs in its own thread
|
||||
int main() {
|
||||
|
||||
// Serial in / out
|
||||
Thread readUartThread;
|
||||
readUartThread.start(callback(&serialContext));
|
||||
|
||||
// MPU startup at 100hz
|
||||
if(imu.init(10,BITS_DLPF_CFG_188HZ)){
|
||||
printf("\nCouldn't initialize MPU6000 via SPI!");
|
||||
//printf("\nCouldn't initialize MPU6000 via SPI!");
|
||||
}
|
||||
|
||||
wait(0.1);
|
||||
@ -213,39 +259,54 @@ int main() {
|
||||
imu.calib_acc(0);
|
||||
calibrationResult = imu.resetOffset_acc();
|
||||
|
||||
// Setup Madwick filter
|
||||
madgwick.begin(100);
|
||||
|
||||
/*-------------- Visible start sequence ------------*/
|
||||
// Start sweeping the arm
|
||||
//servo.sweep(0.0, 1, 2);
|
||||
|
||||
// Enable motor controllers (Will power the motors with no movement)
|
||||
// motorL.enable();
|
||||
// motorR.enable();
|
||||
motorL.disable();
|
||||
motorR.disable();
|
||||
motorL.setDirection(-1);
|
||||
motorR.setDirection(1);
|
||||
|
||||
// Servo Nod to tell us that we are done
|
||||
//servo.nod();
|
||||
|
||||
//servo.setPosition(-0.2);
|
||||
|
||||
/*********************** Start all threads last **********************/
|
||||
|
||||
// Start the pulsing blue led
|
||||
ledBlue.period_ms(10); // Any period. This will be overwritten by motors
|
||||
Thread ledPulseThread;
|
||||
//ledPulseThread.start(callback(&pulseLedContext));
|
||||
Thread::wait(100);
|
||||
|
||||
// Serial in / out
|
||||
serial.set_dma_usage_rx(DMA_USAGE_ALWAYS);
|
||||
serial.attach(&serialISR);
|
||||
Thread::wait(100);
|
||||
|
||||
// ISR won't be called if the serial is not emptied first.
|
||||
serialISR();
|
||||
|
||||
// Enable/Activate the Gyro interrupt
|
||||
imu.enableInterrupt();
|
||||
|
||||
// Start the timer used by the control loop
|
||||
timer.start(); // Used to calc dT
|
||||
|
||||
/*-------------- Visible start sequence ------------*/
|
||||
// Start sweeping the arm
|
||||
servo.sweep(0.0, 1, 2);
|
||||
|
||||
// Start the pulsing blue led
|
||||
Thread ledPulseThread;
|
||||
ledPulseThread.start(callback(&pulseLedContext));
|
||||
|
||||
// Create realtime eventhandler for control loop
|
||||
Thread eventThread(osPriorityRealtime);
|
||||
Thread eventThread(osPriorityHigh);
|
||||
eventThread.start(callback(&queue, &EventQueue::dispatch_forever));
|
||||
|
||||
// Attach gyro interrupt to add a control event
|
||||
gyroINT.rise(queue.event(&controlFunc));
|
||||
|
||||
// Enable motor controllers (Will power the motors with no movement)
|
||||
motorL.enable();
|
||||
motorR.enable();
|
||||
motorL.setDirection(1);
|
||||
motorR.setDirection(-1);
|
||||
|
||||
Thread::wait(1000);
|
||||
|
||||
// Servo Nod to tell us that we are done
|
||||
servo.nod();
|
||||
|
||||
servo.setPosition(-0.2);
|
||||
gyroISR.rise(queue.event(&runControl));
|
||||
|
||||
wait(osWaitForever);
|
||||
}
|
@ -12,7 +12,7 @@ Stepper::Stepper(PinName stepPin,
|
||||
, m_dir(dirPin)
|
||||
, m_en(enPin)
|
||||
, m_accelerationLimitOn(true)
|
||||
, m_accelerationLimit(50.0f)
|
||||
, m_accelerationLimit(80.0f)
|
||||
, m_stepsPerRevolution(200)
|
||||
, m_microStepResolution(8)
|
||||
, m_currentPeriod(0)
|
||||
|
Loading…
x
Reference in New Issue
Block a user